Smart Card Shell

Scott Guthery

February 8, 1998

Introduction

The Smart Card Shell (scsh) is a smart card program that executes a sequence of smart card commands stored in a file on a smart card. The commands can be parameterized so that general-purpose script files can be added to the card, effectively extending the command set of the card. A scsh script file is in effect a program for the smart card written using the commands of the card itself.

Scsh script files provide three advantages. First, a sequence of commands executed directly from a script file on the card will execute more quickly than the same sequence of commands sent one at a time from the host. Second, the individual commands in the script file aren't exposed on either the host computer or the communication connection between the host and the card, so the commands execute more securely. Finally, by providing a higher-level and perhaps application-aware set of commands, scsh script files make application programming easier.

The Smart Card Shell occupies slightly more than 400 bytes in the EEPROM of the smart card. The source code for a C program together with its translation into Motorola 6805 assembler which implements scsh is given in the appendix to this note.

Starting scsh and Stopping scsh

scsh is activated by sending an EXECUTE command to the smart card. The EXECUTE command causes scsh to begin executing commands from the currently selected file so before the EXECUTE command is sent, a SELECT command must be issued to make the script file the currently selected file. The data field of the execute command consists of a sequence of values followed by a template for loading these values into the scsh registers. This loading takes place before scsh begins to execute the commands in the script file so that in effect the values are arguments to the script file. Details of the EXECUTE command are given in the examples below.

Scsh executes commands from the script file until the end of file is reached or a command fails. Script file commands can alter the "program counter" in the script file and thus effect a limited form of looping and branching.

The scsh Registers

The state of scsh consists of eight 1-byte byte registers and one to six 24-byte record registers. These registers are used to set parameters in the commands in the script file and to temporarily store values from the responses to the execution of these commands.

The byte registers are numbered 0 through 7 and the record registers are numbered 8 through 13. The registers provide values to the parameters in the commands coming from scsh command file and can be set with the responses to these commands.

Byte registers 0 and 1are reserved byte registers. They contain the P1 and P2 parameters respectively of the READ RECORD command that is used to retrieve commands from the script file. Normally they are set to simply read the next record in the file but they may be reset to achieve the effect of an unconditional branch in the script file.

Register 8 is a reserved record register. It contains the command read from the script file by the READ RECORD command.

Scsh Commands

The script file is a linear record file of fixed-size 24-byte records. Since the commands in a script file are commands for the smart card on which the file is stored, script files may not be portable from one card type to another.

Each scsh command consists of a (possibly parameterized) valid smart card command followed by a response template. The response template tells scsh how to transfer values from the smart card's response to the execution of the command back to scsh's register set.

For example, suppose the following 9-byte READ RECORD command was in a command file being executed by scsh:

Parameterized Smart Card Command
Response Template

CLA
INS
P1
P2
P3
Start
Formats
End

0x00
0x82
0xF3
0x06
0x10
0xFF
0x4F
0xF3
0xFF

In words, this says to scsh:

Execute the ISO-7816-4 READ RECORD (0x82) command where the value of the P1 parameter is to be taken from byte register 3 (0xF3). This command will read the 16-byte record (0x10) whose index is this value from the file with short EF identifier 1 (0x06) in the current directory. If the command executes successfully, ignore the first four bytes in the response (0x4F) and set byte register 3 to the following byte in the response (0xF3).

The 0xFF bytes mark the beginning and end of the response template.

Scsh Parameters

A reference to any of the scsh registers can appear anywhere in the smart card command. The eight 1-byte byte registers are referred to as 0xF0 through 0xF7. The six 24-byte record registers are referred to as 0xF8 through 0xFD. The current value of the register is inserted where the reference to the register appears.

This is a single-pass resolution process so one register cannot refer to another. If the smart card command must contain a byte 0xF0 through 0xFF as a value, the value is preceded by the scsh escape byte, 0xFE.

The Response Template

The response template consists of a sequence of 1-byte formats that are executed in order by scsh. The format bytes are instructions to move data from the command response into the scsh registers. In this the results of one command can be used to build subsequent commands.

The format bytes are as follows:

Format Byte
Description
Conditions

iF
Skip i bytes in the response
0 i  0xF

Fn
Put current byte into byte register n
0 n  8

in
Put i bytes into record register n
0  i  0xF, 8 n  0xD

0n
Put all the remaining bytes into record register n
8 n  0xD

in
Put the value i into byte register n
0 i  0xF, 0 n  8

En
Use the byte in byte register n as the format byte
0 n  8

Accessing Files from a Script File

Clearly it is desirable to use file access commands --- select, read, write, etc. --- within scsh script files. This necessitates making another file the current file temporarily while the file access command is being executed and then re-selecting the script file to read and execute the next command. This can be accomplished a number of ways.

First, as the above example shows, file access commands with short file identifiers can be used to directly manipulate files in the same directory as the script file. Secondly, script file commands can open a second channel to the card and use this channel for file access while maintaining the script file as the selected file on the original channel. On cards which support neither short file identifiers nor multiple channels, an explicit "push and pop" of the current file identifier can be added when scsh is installed on the card.

For the purpose of this discussion, we will assume that one of these techniques has been implemented so that script file commands can select other files on the card without limitation.

The Script File Reading Script

The script file is read by scsh by executing one of its own commands; namely.

Parameterized Smart Card Command
Response Template

CLA
INS
P1
P2
P3
START
FORMAT
END

0x00
0xB2
0xF0
0xF1
0x18
0xFF
0x08
0xFF

This is the ISO-7816-4 READ RECORD command where parameter P1 is taken from byte register 0 and parameter P2 is taken from byte register 1. Le is set to 24 bytes which is the size of the records in an scsh script file. The single format in the response template instructs scsh to put all the bytes of the response into record register 0. This one-record "meta" script file is hardwired into scsh.

A script file can control its own execution sequence by setting byte registers 0 and 1. In particular, according to ISO-7816-4 these parameters have the following interpretation:

Register 0
Register 1
Interpretation

00
00
Read the first record

00
01
Read the last record

00
02
Read the next record

00
03
Read the previous record

i
01
Read record i

Check the READ RECORD command on the card you are using for its interpretation of P1 and P2 of READ RECORD. See the File Copy example in the Examples section below for an illustration of how to set up a loop in a script file.

Card Operating System Interface

Scsh builds the command to be executed by the card operating system (COS) at a pointer to a buffer provided by the COS. This would typically be the COS's command input or receive buffer. After it builds the command scsh passes control to the COS to execute the command. At the completion of execution, scsh expects the COS to provide access to the status bytes (SW1 and SW2), the length of the command response (Le) and a pointer to the buffer containing the response. This would typically be the COS's output or transmit buffer.

Examples

The following examples show how scsh can be used to build smart card script files.

File Copy

The first example scsh script makes a copy of a linear record file in a directory. It could be used, for example, to quickly make backup copies of files in the directory.

The EXECUTE command which activates this script carries 5 arguments which are loaded into byte registers 2 through 6. Registers 2 and 3 contain the file identifier of the file that is to be copied. Registers 4 and 5 contain the file identifier of the new copy of the file. Register 6 contains the length of the records that will be copied from the first file to the second.

Here is an example of an EXECUTE command for this script:

CLA
INS
P1
P2
P3
Data

0xFE
0xFE
0x00
0x05
0x0B
0x11 0x11 0x22 0x22 0x08 0xF2 0xF3 0xF4 0xF5 0xF6 0xFF

The parameter P3 says that the following data field is 11 bytes long and parameter P2 says that the response template to be used to transfer the data in the data field into the registers starts at the 5th byte of the data field. The response template loads the first 0x11 into byte register 2, the second 0x11 into byte register 3, the first 0x22 into byte register 4, and so forth.

Here is the scsh file copy script:

Parameterized Smart Card Command
Response TemplateFormats

CLA
INS
P1
P2
P3
Data

0x00
0xA4
0x00
0x00
0x02
0xF2 0xF3
0x21

0x00
0xB2
0x00
0x02
0xF6

0xF9

0x00
0xA4
0x00
0x00
0x02
0xF4 0xF5

0x00
0xD2
0x00
0x02
0xF6
0xF9
0x01

The first command SELECTs the "from" file whose file identifier is in byte registers 2 and 3. The response template sets the script file reading command to read the next record in the script file.

The second command reads the next record from the file selected by the first command. Record size of the record to be read is contained in register 6. The response template of this command sends the retrieved record to the second record register (register 9).

The third command selects the "to" file whose file identifier is in byte registers 4 and 5.

The fourth command writes the contents of register 9 to the file selected by the third command. The number of bytes in this record is still given in register 6. The response template for this last command sends the scsh read command back to the first command in the script file.

This script will loop until the second command hits an end of file which will terminate the execution of the script and complete the execution of the EXECUTE command.

Character Replacement

The second example scsh script sets a character position of each record in a linear record file to a constant byte value. The name of the file, the position of the character to be replaced and the replacement character are all parameters to the script.

The following EXECUTE command could be used to run this script file. It loads byte registers 2 and 3 with the file identifier of the file to be processed (0x11 0x22) , byte register 4 with the length of the records in this file (0x08), byte register 5 with response template format byte that determines the number of bytes before the byte to be replaced (0x39) and finally register 6 with the fixed character that is to be inserted into each record (0x77).

CLA
INS
P1
P2
P3
Data

0xFE
0xFE
0x00
0x05
0x0B
0x11 0x22 0x08 0x39 0x77 0xF2 0xF3 0xF4 0xF5 0xF6

Here is the character replacement scsh script:

Parameterized Smart Card Command
Response Template Formats

CLA
INS
P1
P2
P3
Data

0x00
0xA4
0x00
0x00
0x02
0xF2 0xF3
0x10 0x41

0x00
0xB2
0x00
0x02
0xF4

0xE5 0x1F 0x0A 0x20 0x41

0x00
0xD2
0x00
0x00
0xF4
0xF9 0xF6 0xFA
0x10 0x41

The first command selects the file that is to be processed. The file identifier of this file is an argument to the script file execution and is stored in byte registers 2 and 3. The response template formats of the first command simply direct scsh to execute the second command next.

The second command reads a record out of the file and puts the bytes before the byte that is to be changed into record register 9 and the bytes after the byte that is to be changed into record register 10. Notice the indirection that determines the contents of register 9. The response template format is 0xE5 which says use the contents of byte register 5 as a response template format. Byte register 5 was loaded with 0x39 by the EXECUTE command and 0x39 says put (the first) 3 bytes of the response to this command into register 9.

Appendix

The following is the C source code for scsh as described above.

/*

** Smart Card Shell (scsh)

**

** Copyright 1998 Scott B. Guthery

** All rights reserved.

**

** Author: Scott B. Guthery,

** gutherys@aa.net

** +1 425 497 8130

**

** Date: February 7, 1998

**

*/

/*

** Shell Byte Codes

**

** buildCommand: Registers -> Command

** FF end-of-command

** FE escape character

** Fn insert register n

**

** parseResponse: Command Response -> Registers

** FF end-of-template

** iF skip i bytes in the response, 0 <= i < F

** Fn put byte into register n, 0 <= n < 8

** in put i bytes into register n, 0 < i < F, 8 <= n < E

** 0n put all remaining into register n, 8 <= n < F

** in put i into register n, 0 <= i < F, 0 <= n < 8

** En use register n as the format byte, 0 <= n < 8

**

*/

typedef unsigned char BYTE;

/*

** Function Prototypes

*/

void executeCommand(BYTE *record);

BYTE *buildCommand(BYTE *record);

void parseResponse(BYTE *responseBuffer, BYTE *responseTemplate);

void COS(BYTE *commandAPDU, BYTE **responseAPDU);

/*

** Card Operating System Interface

*/

/* COS Input: cbp is where the next command to be passed to the card operating

** system is built. It is typically the card's receive or input buffer.

*/

BYTE commandBuffer[16], *cbp = commandBuffer;

/* COS Output: rbp where the card operating system returns the command response.

** The COS also sets the status registers and the number of bytes

** in the response.

*/

BYTE responseBuffer[24], *rbp = responseBuffer;

BYTE Lr, SW1, SW2;

/* This is the READ RECORD command that is used to read each record

** from the shell file into record register 0.

*/

BYTE readRecord[8] = {0xC0, 0xB2, 0xF0, 0xF1, 0x18, 0xFF, 0x08, 0xFF};

/* These are the registers in which the shell keeps parameter values that are

** used to build commands. The RR[i] are record registers and the BR[i]

** are value registers. You can allocate up to 8 of each. BR[0] and BR[1]

** are reserved for controlling the command that reads from the script file.

*/

BYTE BR[8]; // Registers 0 through 7 are the value registers

BYTE RR[3][24]; // Registers 8 through 15 are the record registers

/*

** Smart Card Shell

** 1) Read the next command from the shell file

** 2) Resolve the parameters in the command using the registers

** 3) Send the command to the card operating system

** 4) Set the registers based on the reponse to the command

*/

void main()

{

/*

** Starting conditions ...

**
- shell file has been selected

** - access conditions of shell file have been satisfied

** - EXECUTE command in RR[0]

*/

/* Parse the EXECUTE command with its own template to initialize the registers

** Execute command is CLA INS 00 RP DL <DL bytes> where is the byte in

** the command itself where template to be used to parse the byte sequence

** after DL starts.

*/

parseResponse(&(RR[0][5]), &(RR[0][RR[0][3]+5]));

 /*

 ** The readRecord command reads a line from the current file into RR[0]

 */

while((executeCommand(readRecord), (SW1==0x90 || SW1 == 0x61)))

executeCommand(RR[0]);

}

void executeCommand(BYTE *record)

{

BYTE *rtp;

cbp = commandBuffer;

rtp = buildCommand(record);

COS(commandBuffer, &rbp);

parseResponse(rbp, rtp);

}

BYTE *buildCommand(BYTE *rp)

{

for(;;cbp++, rp++)

if(*rp == 0xFF) // 0xFF is the end-of-command indicator

return --cbp, ++rp;

 else if(*rp == 0xFE) // 0xFE is the escape character

*cbp = *++rp;

else if((*rp & 0xF0) == 0xF0) { // 0xFi insert register i

if(*rp & 0x08)

 buildCommand(RR[(*rp & 0x07)]);

else

*cbp = BR[*rp & 0x07];

} else // otherwise just copy the byte

*cbp = *rp;

}

void parseResponse(BYTE *rb, BYTE *rt)

{

BYTE i, *rr, *rp;

for(rp = rb;;rt++) {

if((*rt & 0xF0) == 0xE0) // Use value register value as format

*rt = BR[*rt & 0x07];

if(*rt == 0xFF)

 // 0xFE is the end-of-template indicator

return;

else if((*rt & 0x0F) == 0x0F) // Skip lo-nibble bytes in the buffer

rp += (*rt>>4);

else {

 if(*rt & 0x08) { // Put response into a record register

rr = RR[*rt & 0x07];

if(i = (*rt >>4)) { // - high-nibble bytes

 for(; i; i--)

 *rr++ = *rp++;

} else { // - all remaining bytes

 while(rp < rb+Lr)

 *rr++ = *rp++;

}

*rr = 0xFF;

} else if((*rt & 0xF0) == 0xF0) // Response to register

BR[*rt & 0x0F] = *rp++;

else

BR[*rt & 0x0F] = (*rt>>4); // Constant to register

}

}

}

The following is a translation of the above C version of scsh into Motorola 6805 assembler. It can serve as the core of a smart card softmask which implements scsh on a smart card with a 6805 core. This code must be connected with the particular card operating system on the card.

 99: void main()

 100: {

 101: /*

 102: ** Starting conditions ...

 103: **
- shell file has been selected

 104: ** - access conditions of shell file have been satisfied

 105: ** - EXECUTE command in RR[0]

 106: */

 107:

 108: /* Parse the EXECUTE command with its own template to initialize the registers

 109: ** Execute command is CLA INS 00 RP DL <DL bytes> where is the byte in

 110: ** the command itself where template to be used to parse the byte sequence

 111: ** after DL starts.

 112: */

 113:
parseResponse(&(RR[0][5]), &(RR[0][RR[0][3]+5]));

 114:

 115: /*

 116: ** The readRecord command reads a line from the current file into RR[0]

 117: */

00000000 A601 LDA @RR:5

00000002 B700 STA _parseResponsep1

00000004 AE00 LDX @RR:5

00000006 BF01 STX _parseResponsep1:1

00000008 C60003 LDA RR:3

0000000B AB05 ADD #0x05

0000000D B700 STA spill_1

0000000F A600 LDA @RR

00000011 BB00 ADD spill_1

00000013 B700 STA _R_Y

00000015 A601 LDA @RR

00000017 A900 ADC #0x00

00000019 97 TAX

0000001A B600 LDA _R_Y

0000001C CD0000 JSR parseResponse

 118:
while((executeCommand(readRecord), (SW1==0x90 || SW1 == 0x61)))

0000001F 2007 BRA *7 /abs = 0028

00000021 AE01 LDX @RR

00000023 A600 LDA @RR

00000025 CD0000 JSR executeCommand

 119:

executeCommand(RR[0]);

00000028 AE01 LDX @readRecord

0000002A A600 LDA @readRecord

0000002C CD0000 JSR executeCommand

0000002F C60000 LDA SW1

00000032 A190 CMP #0x90

00000034 27EB BEQ *-21 /abs = 0021

00000036 C60000 LDA SW1

00000039 A161 CMP #0x61

0000003B 27E4 BEQ *-28 /abs = 0021

 120: }

0000003D 81 RTS

 122: void executeCommand(BYTE *record)

 123: {

 124:
BYTE *rtp;

 125:

00000000 BF00 STX record

00000002 B701 STA record:1

 126:
cbp = commandBuffer;

00000004 A600 LDA @commandBuffer

00000006 C70001 STA cbp:1

00000009 A601 LDA @commandBuffer

0000000B C70000 STA cbp

 127:
rtp = buildCommand(record);

0000000E B601 LDA record:1

00000010 CD0000 JSR buildCommand

00000013 BF00 STX rtp

00000015 B701 STA rtp:1

 128:
COS(commandBuffer, &rbp);

00000017 B700 STA spill_0

00000019 A601 LDA @commandBuffer

0000001B B700 STA _COSp1

0000001D A600 LDA @commandBuffer

0000001F B701 STA _COSp1:1

00000021 BF00 STX spill_1

00000023 AE01 LDX @rbp

00000025 A600 LDA @rbp

00000027 CD0000 JSR COS

 129:
parseResponse(rbp, rtp);

0000002A C60000 LDA rbp

0000002D B700 STA _parseResponsep1

0000002F CE0001 LDX rbp:1

00000032 BF01 STX _parseResponsep1:1

00000034 BE00 LDX spill_1

00000036 B600 LDA spill_0

00000038 CD0000 JSR parseResponse

 130: }

0000003B 81 RTS

 132: BYTE *buildCommand(BYTE *rp)

 133: {

00000000 BF00 STX rp

00000002 B701 STA rp:1

 134:
for(;;cbp++, rp++)

00000004 CC00C5 JMP buildCommand:204

 135:

if(*rp == 0xFF) // 0xFF is the end-of-command indicator

00000007 B601 LDA rp:1

00000009 B702 STA _LEX:2

0000000B BE00 LDX rp

0000000D BF01 STX _LEX:1

0000000F 5F CLRX

00000010 BD00 JSR _LEX

00000012 A1FF CMP #0xFF

00000014 261E BNE *30 /abs = 0034

 136:

return --cbp, ++rp;

00000016 C60001 LDA cbp:1

00000019 CE0000 LDX cbp

0000001C 4D TSTA

0000001D 2601 BNE *1 /abs = 0020

0000001F 5A DECX

00000020 4A DECA

00000021 C70001 STA cbp:1

00000024 CF0000 STX cbp

00000027 B601 LDA rp:1

00000029 BE00 LDX rp

0000002B 4C INCA

0000002C 2601 BNE *1 /abs = 002F

0000002E 5C INCX

0000002F B701 STA rp:1

00000031 BF00 STX rp

00000033 81 RTS

 137:
 else if(*rp == 0xFE) // 0xFE is the escape character

00000034 BD00 JSR _LEX

00000036 A1FE CMP #0xFE

00000038 2624 BNE *36 /abs = 005E

 138:

*cbp = *++rp;

0000003A B601 LDA rp:1

0000003C BE00 LDX rp

0000003E 4C INCA

0000003F 2601 BNE *1 /abs = 0042

00000041 5C INCX

00000042 B701 STA rp:1

00000044 BF00 STX rp

00000046 B702 STA _LEX:2

00000048 BF01 STX _LEX:1

0000004A 5F CLRX

0000004B BD00 JSR _LEX

0000004D 97 TAX

0000004E C60001 LDA cbp:1

00000051 B702 STA _SEX:2

00000053 C60000 LDA cbp

00000056 B701 STA _SEX:1

00000058 9F TXA

00000059 5F CLRX

0000005A BD00 JSR _SEX

0000005C 2058 BRA *88 /abs = 00B6

 139:

else if((*rp & 0xF0) == 0xF0) { // 0xFi insert register i

0000005E BD00 JSR _LEX

00000060 AEF0 LDX #0xF0

00000062 A4F0 AND #0xF0

00000064 A1F0 CMP #0xF0

00000066 263C BNE *60 /abs = 00A4

 140:

if(*rp & 0x08)

00000068 5F CLRX

00000069 BD00 JSR _LEX

0000006B AE08 LDX #0x08

0000006D A408 AND #0x08

0000006F A108 CMP #0x08

00000071 2617 BNE *23 /abs = 008A

 141:

 buildCommand(RR[(*rp & 0x07)]);

 142:

else

00000073 5F CLRX

00000074 BD00 JSR _LEX

00000076 A407 AND #0x07

00000078 AE18 LDX #0x18

0000007A 42 MUL

0000007B AB00 ADD @RR

0000007D B700 STA _R_Y

0000007F 4F CLRA

00000080 A901 ADC @RR

00000082 97 TAX

00000083 B600 LDA _R_Y

00000085 CD0000 JSR buildCommand

00000088 2018 BRA *24 /abs = 00A2

 143:

*cbp = BR[*rp & 0x07];

0000008A 5F CLRX

0000008B BD00 JSR _LEX

0000008D A407 AND #0x07

0000008F 97 TAX

00000090 C60001 LDA cbp:1

00000093 B702 STA _SEX:2

00000095 D60000 LDA 0,X

00000098 97 TAX

00000099 C60000 LDA cbp

0000009C B701 STA _SEX:1

0000009E 9F TXA

0000009F 5F CLRX

000000A0 BD00 JSR _SEX

 144:

} else // otherwise just copy the byte

000000A2 2012 BRA *18 /abs = 00B6

000000A4 5F CLRX

000000A5 BD00 JSR _LEX

000000A7 97 TAX

000000A8 C60001 LDA cbp:1

000000AB B702 STA _SEX:2

000000AD C60000 LDA cbp

000000B0 B701 STA _SEX:1

000000B2 9F TXA

000000B3 5F CLRX

000000B4 BD00 JSR _SEX

 145:

*cbp = *rp;

000000B6 C60001 LDA cbp:1

000000B9 CE0000 LDX cbp

000000BC 4C INCA

000000BD 2601 BNE *1 /abs = 00C0

000000BF 5C INCX

000000C0 C70001 STA cbp:1

000000C3 CF0000 STX cbp

000000C6 3C01 INC rp:1

000000C8 2602 BNE *2 /abs = 00CC

000000CA 3C00 INC rp

000000CC CCFF38 JMP buildCommand:7

 146: }

000000CF 81 RTS

 148: void parseResponse(BYTE *rb, BYTE *rt)

 149: {

 150:
BYTE i, *rr, *rp;

 151:

00000000 BF00 STX rt

00000002 B701 STA rt:1

 152:
for(rp = rb;;rt++) {

00000004 B601 LDA rb:1

00000006 B701 STA rp:1

00000008 BE00 LDX rb

0000000A BF00 STX rp

0000000C CC0185 JMP parseResponse:404

 153:

if((*rt & 0xF0) == 0xE0) // Use value register value as format

0000000F B601 LDA rt:1

00000011 B702 STA _LEX:2

00000013 BE00 LDX rt

00000015 BF01 STX _LEX:1

00000017 5F CLRX

00000018 BD00 JSR _LEX

0000001A A4F0 AND #0xF0

0000001C A1E0 CMP #0xE0

0000001E 2617 BNE *23 /abs = 0037

 154:

*rt = BR[*rt & 0x07];

00000020 BD00 JSR _LEX

00000022 A407 AND #0x07

00000024 97 TAX

00000025 D60000 LDA 0,X

00000028 B700 STA spill_0

0000002A B602 LDA _LEX:2

0000002C B702 STA _SEX:2

0000002E B601 LDA _LEX:1

00000030 B701 STA _SEX:1

00000032 B600 LDA spill_0

00000034 5F CLRX

00000035 BD00 JSR _SEX

 155:

if(*rt == 0xFF) // 0xFE is the end-of-template indicator

00000037 B601 LDA rt:1

00000039 B702 STA _LEX:2

0000003B BE00 LDX rt

0000003D BF01 STX _LEX:1

0000003F 5F CLRX

00000040 BD00 JSR _LEX

00000042 A1FF CMP #0xFF

00000044 2601 BNE *1 /abs = 0047

 156:

return;

00000046 81 RTS

 157:

else if((*rt & 0x0F) == 0x0F) // Skip lo-nibble bytes in the buffer

00000047 BD00 JSR _LEX

00000049 AE0F LDX #0x0F

0000004B A40F AND #0x0F

0000004D A10F CMP #0x0F

0000004F 2618 BNE *24 /abs = 0069

 158:

rp += (*rt>>4);

 159:

else {

00000051 5F CLRX

00000052 BD00 JSR _LEX

00000054 44 LSRA

00000055 44 LSRA

00000056 44 LSRA

00000057 44 LSRA

00000058 B700 STA spill_1

0000005A B601 LDA rp:1

0000005C BB00 ADD spill_1

0000005E B701 STA rp:1

00000060 B600 LDA rp

00000062 2402 BCC *2 /abs = 0066

00000064 3C00 INC rp

00000066 CC0125 JMP parseResponse:398

 160: if(*rt & 0x08) { // Put response into a record register

00000069 5F CLRX

0000006A BD00 JSR _LEX

0000006C AE08 LDX #0x08

0000006E A408 AND #0x08

00000070 A108 CMP #0x08

00000072 2703 BEQ *3 /abs = 0077

00000074 CC00CF JMP parseResponse:326

 161:

rr = RR[*rt & 0x07];

00000077 5F CLRX

00000078 BD00 JSR _LEX

0000007A B700 STA _R_Y

0000007C A407 AND #0x07

0000007E AE18 LDX #0x18

00000080 42 MUL

00000081 AB00 ADD @RR

00000083 B701 STA rr:1

00000085 4F CLRA

00000086 A901 ADC @RR

00000088 B700 STA rr

 162:

if(i = (*rt >>4)) { // - high-nibble bytes

0000008A BE00 LDX _R_Y

0000008C 54 LSRX

0000008D 54 LSRX

0000008E 54 LSRX

0000008F 54 LSRX

00000090 BF00 STX i

00000092 B600 LDA i

00000094 2745 BEQ *69 /abs = 00DB

 163:

 for(; i; i--)

00000096 203D BRA *61 /abs = 00D5

00000098 B601 LDA rr:1

0000009A BE00 LDX rr

0000009C BF00 STX spill_0

0000009E B700 STA spill_1

000000A0 4C INCA

000000A1 2601 BNE *1 /abs = 00A4

000000A3 5C INCX

000000A4 B701 STA rr:1

000000A6 BF00 STX rr

000000A8 B601 LDA rp:1

000000AA BE00 LDX rp

000000AC BF00 STX spill_2

000000AE B700 STA spill_3

000000B0 4C INCA

000000B1 2601 BNE *1 /abs = 00B4

000000B3 5C INCX

000000B4 B701 STA rp:1

000000B6 BF00 STX rp

000000B8 B600 LDA spill_3

000000BA B702 STA _LEX:2

000000BC B600 LDA spill_2

000000BE B701 STA _LEX:1

000000C0 B602 LDA _LEX:2

000000C2 5F CLRX

000000C3 BD00 JSR _LEX

000000C5 B700 STA _R_Y

000000C7 B600 LDA spill_1

000000C9 B702 STA _SEX:2

000000CB B600 LDA spill_0

000000CD B701 STA _SEX:1

000000CF B600 LDA _R_Y

000000D1 BD00 JSR _SEX

 164:

 *rr++ = *rp++;

000000D3 3A00 DEC i

000000D5 B600 LDA i

000000D7 26BF BNE *-65 /abs = 0098

 165:

} else { // - all remaining bytes

000000D9 205C BRA *92 /abs = 0137

 166:

 while(rp < rb+Lr)

000000DB 203B BRA *59 /abs = 0118

000000DD B601 LDA rr:1

000000DF BE00 LDX rr

000000E1 BF00 STX spill_0

000000E3 B700 STA spill_1

000000E5 4C INCA

000000E6 2601 BNE *1 /abs = 00E9

000000E8 5C INCX

000000E9 B701 STA rr:1

000000EB BF00 STX rr

000000ED B601 LDA rp:1

000000EF BE00 LDX rp

000000F1 BF00 STX spill_2

000000F3 B700 STA spill_3

000000F5 4C INCA

000000F6 2601 BNE *1 /abs = 00F9

000000F8 5C INCX

000000F9 B701 STA rp:1

000000FB BF00 STX rp

000000FD B600 LDA spill_3

000000FF B702 STA _LEX:2

00000101 B600 LDA spill_2

00000103 B701 STA _LEX:1

00000105 B602 LDA _LEX:2

00000107 5F CLRX

00000108 BD00 JSR _LEX

0000010A B700 STA _R_Y

0000010C B600 LDA spill_1

0000010E B702 STA _SEX:2

00000110 B600 LDA spill_0

00000112 B701 STA _SEX:1

00000114 B600 LDA _R_Y

00000116 BD00 JSR _SEX

 167:

 *rr++ = *rp++;

 168:

}

00000118 C60000 LDA Lr

0000011B B700 STA spill_0

0000011D B601 LDA rb:1

0000011F BB00 ADD spill_0

00000121 B700 STA _R_Y

00000123 B600 LDA rb

00000125 A900 ADC #0x00

00000127 97 TAX

00000128 B600 LDA rp

0000012A CD0000 JSR _CMPS

0000012D 22AE BHI *-82 /abs = 00DD

0000012F 2606 BNE *6 /abs = 0137

00000131 B600 LDA _R_Y

00000133 B101 CMP rp:1

00000135 22A6 BHI *-90 /abs = 00DD

 169:

*rr = 0xFF;

00000137 B601 LDA rr:1

00000139 B702 STA _SEX:2

0000013B A6FF LDA #0xFF

0000013D BE00 LDX rr

0000013F BF01 STX _SEX:1

00000141 5F CLRX

00000142 BD00 JSR _SEX

 170:

} else if((*rt & 0xF0) == 0xF0) // Response to register

00000144 2048 BRA *72 /abs = 018E

00000146 5F CLRX

00000147 BD00 JSR _LEX

00000149 AEF0 LDX #0xF0

0000014B A4F0 AND #0xF0

0000014D A1F0 CMP #0xF0

0000014F 262C BNE *44 /abs = 017D

 171:

BR[*rt & 0x0F] = *rp++;

 172:

else

00000151 5F CLRX

00000152 BD00 JSR _LEX

00000154 A40F AND #0x0F

00000156 97 TAX

00000157 B601 LDA rp:1

00000159 BF00 STX _R_Y

0000015B BE00 LDX rp

0000015D BF00 STX spill_1

0000015F B700 STA spill_2

00000161 4C INCA

00000162 2601 BNE *1 /abs = 0165

00000164 5C INCX

00000165 B701 STA rp:1

00000167 BF00 STX rp

00000169 B600 LDA spill_2

0000016B B702 STA _LEX:2

0000016D B600 LDA spill_1

0000016F B701 STA _LEX:1

00000171 B602 LDA _LEX:2

00000173 5F CLRX

00000174 BD00 JSR _LEX

00000176 BE00 LDX _R_Y

00000178 D70000 STA 0,X

0000017B 2011 BRA *17 /abs = 018E

0000017D 5F CLRX

0000017E BD00 JSR _LEX

00000180 B700 STA _R_Y

00000182 A40F AND #0x0F

00000184 97 TAX

00000185 B600 LDA _R_Y

00000187 44 LSRA

00000188 44 LSRA

00000189 44 LSRA

0000018A 44 LSRA

0000018B D70000 STA 0,X

 173:

BR[*rt & 0x0F] = (*rt>>4); // Constant to register

 174:

}

 175:
}

0000018E 3C01 INC rt:1

00000190 2602 BNE *2 /abs = 0194

00000192 3C00 INC rt

00000194 CCFE78 JMP parseResponse:15

 176: }

00000197 81 RTS

